

Building leaders in the sustainable management of contaminated land and groundwater

Adelaide Branch Event – 30 July 2024

The highs and lows of sinusoidal hydraulic testing Developing an alternative method for characterising aquifer hydraulic properties

Chris Turnadge¹, Eddie Banks², Margaret Shanafield², Todd Rasmussen³, Ron Kreymborg⁴, Kieran Harford⁴ ¹ CSIRO, ² Flinders University, ³ University of Georgia (USA), ⁴ Kremford Pty Ltd 30 July 2024 | Australian Land and Groundwater Association Technical Event This research was funded by CSIRO's Deep Earth Imaging Future Science Platform

Tonight:

"Minimum viable product": This presentation is at least interesting to you

₿ALGA

Tonight:

"Minimum viable product": This presentation is at least interesting to you

Best possible outcome: This research is of benefit to you

Content – A linear, but circular story

⇒ALGA

1. What are we doing?

In a nutshell...

• What are we doing?

📚 A L G A

Developing methods of sinusoidal hydraulic testing

• Why?

To robustly estimate hydraulic properties, particularly in more challenging hydrogeological settings

• How?

Using a transient method of two-well slug testing

2. How can we perform slug tests better?

Pros and cons of traditional slug testing methods

Advantages

- Rapid
- Low cost
- Simple to perform
- Simple to analyse
- Can characterise low permeability units
- Extraction of water not required

(Butler, 2019)

📚 A L G A

Pros and cons of traditional slug testing methods

Advantages

- Rapid
- Low cost
- Simple to perform
- Simple to analyse
- Can characterise low permeability units
- Extraction of water not required

Disadvantages

- Can require long times to re-equilibrate
- Can be affected by **borehole storage**
- Can be affected by skin effects
- Can't measure response at a second well
- Can't estimate storage reliably
- Can be affected by systematic measurement errors
- Unsuitable for large diameter wells or high permeability units

(Butler, 2019; Chapuis, 2015)

(Butler, 2019)

Sidebar 1: What is sinusoidal slug testing?

Familiar territory: Traditional **falling head slug** tests (single well)

Copyright 2024 ALGA confidential

11

Familiar territory: Traditional falling head slug tests (two wells)

Copyright 2024 ALGA confidential

12

Unfamiliar territory: Sinusoidal slug tests

₿ALGA

Sidebar 2: What is frequency dependence?

Analogies – Body composition testing

(https://www.essendonsportsmedicine.com.au/services/skinfold-assessment)

Analogies – Body composition testing

Traditional method

Skin fold testing

(https://www.essendonsportsmedicine.com.au/services/skinfold-assessment)

Modern method

Bioelectrical impedance analysis

⇒ALGA

Analogies – Medical imaging

Traditional method

Magnetic resonance imaging

(https://nmr.oxinst.com/application-detail/what-is-td-nmr)

300

ALGA

Analogies – Medical imaging

Traditional method

Magnetic resonance imaging

(https://hospitalresearch.org.au/news/latestnews/sa-first-imaging-technology-to-improveparkinsons-diagnosis-2/)

(https://nmr.oxinst.com/application-detail/what-is-td-nmr)

Modern method

Electrochemical impedance tomography

ALGA

Analogies – Battery testing

Traditional method

Direct current internal resistance

I A L G A

Analogies – Battery testing

Traditional method

Direct current internal resistance

Modern method

Electrical impedance spectroscopy

Analogies – Core permeametry

(https://doi.org/10.1016/j.enggeo.2018.10.019)

₿ALGA

Analogies – Core permeametry

Traditional method

Transient pulse decay testing

(https://doi.org/10.1016/j.enggeo.2018.10.019)

Modern method

Sinusoidal pressure or flow testing

(Hasanov et al., 2019)

Analogies – Geophysical surveys

Traditional method <u>Time</u> domain electromagnetic survey Receiver, loop (http://zonge.com/wp-Transmitter loop content/uploads/2011/10/tdemIllustrationZongeInter national.gif) Transmitter Current Time ▲ Receiver Output Voltage Time (https://archive.epa.gov/esd/archive-geophysics/web/html/ time-domain_electromagnetic_methods.html)

₿ALGA

Analogies – Geophysical surveys

Traditional method

<u>Time</u> domain electromagnetic survey

⁽https://archive.epa.gov/esd/archive-geophysics/web/html/ time-domain_electromagnetic_methods.html)

Time

Time

Modern method

Frequency domain electromagnetic survey

⇒ALGA

Summary of testing method analogies

Traditional methods

Often measure responses to **impulse** disturbances

Modern methods

Include measuring responses to **frequency-dependent** disturbances

> These can persist **further** and be easier to measure **within noise**

ALGA Copyright 2024 ALGA confidential

25

2. How can we perform slug tests better? (revisited)

Recap: Traditional falling head slug tests (two wells)

Recap: Sinusoidal slug tests

₿ALGA

Field methods

Extendable 6-metre-long PVC slug (40 mm OD)

Field methods

Customised electronic winch

Extendable 6-metre-long PVC slug (40 mm OD)

Field methods

Customised electronic winch

Extendable 6-metre-long PVC slug (40 mm OD)

Real-time wireless measurements

Field methods: Prototype #1 – circa 2020

- Followed precedent set by Guiltinan and Becker (2015)
- Self-designed and assembled

ALGA

- Cheap, off-the-shelf **DC stepper motor** and driver
- Repurposed a data logger for automated motor control
- Research quality: Lots of gaffer tape and zip ties!

Field methods: Prototype #2 – circa 2022

• Winch fabricated by Adelaide firm Simax Engineering

- Motor control system designed and manufactured by Melbourne engineering firm Kremford
- Real-time monitoring and visualisation system designed and manufactured by Adelaide engineering firm Embedtronics
- Tested at various field sites around Adelaide

ALGA

Field demonstration at Australasian Groundwater Conference in Perth, 2022

Interpretation methods

ALGA

Reference point: Interpreting traditional pumping tests For confined aquifers, we use the Theis (1935) solution:

 $s(t) = \frac{Q}{4 \pi T} \quad W\left(\frac{r^2 S}{T 4 t}\right)$

Sinusoidal slug tests

For confined aquifers, we use the Black and Kipp (1981) solution:

3. The **highs** and **lows** of sinusoidal slug testing

The **highs**: Aldinga field site

- Leaky confined aquifer (Port Willunga Formation)
- 50 mm diameter wells

➢ Propagated sinusoidal signal up to 12 m

ALGA

The highs: Aldinga field site

- Leaky confined aquifer (Port Willunga Formation)
- 50 mm diameter wells

➢ Propagated sinusoidal signal up to 12 m

LGA

Falling head slug test: $\Delta P \approx 0.4$ m, $\Delta t \approx 3$ mins

The **highs**: Aldinga field site

ALGA

Modelled results

Traditional slug test: (single well)

- $T = 3.7 \text{ m}^2/\text{d}$
- $S = 4.2 \times 10^{-6}$

Sinusoidal slug test: (two wells)

- $T = 16 \text{ m}^2/\text{d}$
- $S = 4.0 \times 10^{-6}$

BUT! These estimates are **not** directly comparable, due to differing spatial support

The lows: Balhannah field site

ALGA

Sinusoidal slug test: no response

- Fractured rock aquifer (Woolshed Flat Shale)
- 200 mm diameter wells
 - No measurable propagation of signal
 - Attributed to large diameter wells

The highs: McLaren Vale field site

ALGA

Sinusoidal slug test: $\Delta A \approx 2$ %, $\Delta \phi \approx 30$ seconds

- Leaky confined aquifer (Pirramimma Sand)
- 80 mm diameter wells
 - Propagated sinusoidal signal up to 25 m

4. What are the **benefits** of sinusoidal slug testing?

Benefits – Logistical

🚔 A L G A

Compared to traditional slug tests:

- Better propagation of sinusoidal signals
- Easier detection of responses to sinusoidal tests, even in the presence of background noise
- More rapid to undertake sinusoidal testing
- More robust estimation of storage, in addition to transmissivity
- Lower uncertainty of properties estimated, due to multiple replicates (cycles) within a single test

Benefits – Insight 1: Aquitard characterisation

⇒ALGA

ALGA

📚 A L G A

ALGA

60

20

ALGA

5. How are we making this research accessible?

Partnering with Kremford Pty Ltd

• Ron Kreymborg and Kieran Harford

LGA

- Over 15 years' experience in providing solutions to industry involving precise motor control, including eye testing equipment, labelling and packaging machines and software
- Prior experience in electronic circuit design, microprocessor control, and software **commercialisation**
- Contracted in 2022 to develop precise control of electronically controlled winch
- Since 2023 have collaborated to design and assemble a comprehensive off-the-shelf system to perform for sinusoidal slug testing

Kremford system for sinusoidal slug testing

Simplicity and portability

📚 A L G A

- Power source: All devices powered using DC batteries (either 24V or 5V) to maximise portability
- 2. Transportation: All equipment contained within 6 hard cases, each with a maximum mass under 20kg, to simplify transportation

Base station monitoring node with laptop visualisation

Portable electronically controlled winch

Wireless observation well node, including sensor and cable

Kremford system for sinusoidal slug testing

Automated control of slug movement

ALGA

1. Extendable slug:

- Four 1.5-metre-long plastic sections can be connected to assemble up to a 6-metre-long slug
- 40 mm OD is suitable for use in 50 mm ID wells (piezometers) or larger
- 2. Electronic winch: A bespoke portable winch driven by a specialised DC stepper motor, allowing precise control at low speeds
- **3. Tripod: Collapsible** tripod used to convey steel rope from winch to downhole slug

Kremford sinusoidal testing system

Kremford system for sinusoidal slug testing

Measurements presented in real-time

LGA

- Monitoring: Vented, high resolution (i.e., 3.5 metre range) pressure transducers for monitoring both production and observation well(s) at 5-second intervals
- 2. Communication: Observation well pressures sent wirelessly back to base station at production well
- 3. Visualisation: All observations presented in real-time on a web-based app on a laptop or similar device
- Software: Bespoke software provided to estimate hydraulic properties from measurements while in the field

Wrapping up

The "take home" messages from us

- Sinusoidal slug testing can be used to reliably estimate subsurface hydraulic properties, including both the transmissivity and storage of aquifers, and potentially aquitards
- This method combines the **benefits** of slug testing with the **advantages** of using a **frequency-based** approach
- 3. The CSIRO, Flinders University, and the University of Georgia have partnered with Kremford Pty Ltd to commercialise this research for uptake by industry

Thank you for listening!

ALGA

The "take home" messages from you!

 From your experiences, what limitations have you found with slug testing?

• Do you see a role for this method in assisting contaminated site assessments?

• Would you see value in a pump-based equivalent of this system?

📚 A L G A

References cited

Black, JH and Kipp Jr, KL (1981). Determination of hydrogeological parameters using sinusoidal pressure tests: A theoretical appraisal, Water Resources Research 17(3): 686-692.

Butler Jr, JJ (2019). The Design, Performance, and Analysis of Slug Tests, 2nd edition, CRC Press, Boca Raton, Florida, USA, 281p.

Chapuis, RP (2015). Overdamped slug tests in aquifers: the three diagnostic graphs for a user-independent interpretation, Geotechnical Testing Journal 38(4): 474-489.

Cooper Jr, HH, Bredehoeft, JD, and Papadopulos, IS (1967). Response of a finite diameter well to an instantaneous charge of water, Water Resources Research 3(1): 263-269.

Flipo, N, Gallois, N, and Schuite, J (2023). Regional coupled surface-subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data, Geoscientific Model Development 16(1): 353-381.

Guiltinan, E, and Becker, MW (2015). Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests, Journal of Hydrology 521: 100-107.

Hasanov, AK, Dugan, B, Batzle, ML, and Prasad, M (2019). Hydraulic and poroelastic rock properties from oscillating pore pressure experiments, Journal of Geophysical Research: Solid Earth 124(5): 4473-4491.

Rasmussen, TC, Haborak, KG, and Young, MH (2003). Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River site, South Carolina, USA, Hydrogeology Journal, 11: 466-482.

Building leaders in the sustainable management of **contaminated land and groundwater**

Australasian Land & Groundwater Association www.landandgroundwater.com +61 2 4885 1136